Математика и информатика

Лекция 23

Некоторые кибернетические аспекты информатики

План

1. Предмет кибернетики

2. Управляемые системы

3. Функции человека и машины в системах управления

4. Направления исследований и разработок в области систем искусственного интеллекта

5. Представление знаний в системах искусственного интеллекта

6. Интеллектуальный интерфейс информационной системы

7. Структура современной системы решения прикладных задач

1. Предмет кибернетики

Слово “кибернетика” происходит от греческого слова, означающего в переводе “кормчий”. Его современное значение связано с научной областью, начало которой положила книга американского ученого Норберта Винера “Кибернетика или управление и связь в животном и машине”, вышедшая в 1948 г. Вскоре предметом новой науки стали не только биологические и технические системы, но и системы любой природы, способные воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. В изданной в 1947 г. “Энциклопедии кибернетики” говорится, что это “... наука об общих законах получения, хранения, передачи и преобразования информации в сложных управляющих системах. При этом под управляющими системами здесь понимаются не только технические, а и любые биологические, административные и социальные системы”. Таким образом, кибернетика и информатика являются, скорее всего, единой наукой. Сегодня кибернетику все чаще считают частью информатики, ее “высшим” разделом, в какой-то степени аналогичным по положению “высшей математике” по отношению ко всей математике вообще (примерно в таком же положении по отношению к информатике находится и наука “Искусственный интеллект”). Информатика в целом шире кибернетики, так как в информатике имеются аспекты, связанные с архитектурой и программированием ЭВМ, которые непосредственно к кибернетике отнести нельзя.

Кибернетические разделы информатики богаты подходами и моделями в исследовании разнообразных систем и используют в качестве аппарата многие разделы фундаментальной и прикладной математики.

Классическим и до известной степени самостоятельным разделом кибернетики считают исследование операций. Под этим термином понимают применение математических методов для обоснования решений в различных областях целенаправленной человеческой деятельности.

Поясним, что понимается под “решением”. Пусть предпринимается некоторое мероприятие (в производственной, экономической или социальной сфере), направленное на достижение определенной цели - такое мероприятие называется “операцией”. У лица (или группы лиц), ответственного за проведение этого мероприятия, имеется возможность выбора, как его организовать. Например, можно выбрать виды продукции, которые будут выпускаться, оборудование, которое при этом будет применяться, так или иначе распределить имеющиеся средства и т.д. “Операция” есть управляемое мероприятие.

Решение есть выбор из ряда возможностей, имеющихся у ответственного лица. Решения могут быть удачными и неудачными, разумными и неразумными. Оптимальными называют решения, по тем или другим принципам более предпочтительные, чем другие. Цель исследования операций - математическое (количественное) обоснование оптимальных решений.

Исследование операций включает в себя следующие разделы:

1) математическое программирование (обоснование планов, программ хозяйственной деятельности); оно включает в себя относительно самостоятельные разделы: линейное программирование, нелинейное программирование, динамическое программирование (во всех этих названиях термин “программирование” возник исторически и не имеет отношения к программированию ЭВМ);

2) теорию массового обслуживания, опирающуюся на теорию случайных процессов;

3) теорию игр, позволяющую обосновывать решения, принимаемые в условиях неполноты информации.

Отметим, что эти разделы не связаны непосредственно с ЭВМ и техническими системами. Иным, быстро развивавшимся в 70-х-80-х годах, разделом кибернетики были системы автоматического (автоматизированного) регулирования. Этот раздел имеет замкнутый, автономный характер, исторически сложившийся самостоятельно. Он тесно связан с разработкой технических систем автоматизированного регулирования и управления технологическими и производственными процессами.

Еще одним классическим разделом кибернетики является распознавание образов, возникшее из задачи моделирования в технических системах восприятия человеком знаков, предметов и речи, а также формирования у человека понятий (обучение в простейшем, техническом смысле). Этот раздел в значительной мере возник из технических потребностей робототехники. Например, требуется, чтобы робот-сборщик распознавал нужные детали. При автоматической сортировке (или отбраковке) деталей необходима способность распознавания.

Вершиной кибернетики (и всей информатики в целом) является раздел, посвященный проблемам искусственного интеллекта. Большинство современных систем управления обладают свойством принятия решений - свойством интеллектуальности, т.е. в них смоделирована интеллектуальная деятельность человека при принятии решений.

2. Управляемые системы

Несмотря на такое многообразие задач, решаемых в разных разделах кибернетики, разнообразие моделей, подходов и методов, кибернетика остается единой наукой благодаря использованию общей методологии, основанной на теории систем и системном анализе.

Система - это предельно широкое, начальное, не определяемое строго понятие. Предполагается, что система обладает структурой, т.е. состоит из относительно обособленных частей (элементов), находящихся, тем не менее, в существенной взаимосвязи и взаимодействии. Существенность взаимодействия состоит в том, что благодаря ему элементы системы приобретают все вместе некую новую функцию, новое свойство, которыми не обладает ни один из элементов в отдельности. В этом состоит отличие системы от сети, также состоящей из отдельных элементов, но не связанных между собой существенными отношениями. Сравните, например, предприятие, цеха которого образуют систему, поскольку лишь все вместе приобретают свойство выпускать конечную продукцию (и ни один из них в отдельности с этой задачей не справится), и сеть магазинов, которые могут работать независимо друг от друга.

Кибернетика как наука об управлении изучает не все системы вообще, а только управляемые системы. Зато область интересов и приложений кибернетики распространяется на самые разнообразные биологические, экономические, социальные системы.

Одной из характерных особенностей управляемой системы является возможность переходить в различные состояния под влиянием различных управляющих воздействий. Всегда существует некое множество состояний системы, из которых производится выбор предпочтительного состояния.

Отвлекаясь от конкретных особенностей отдельных кибернетических систем и выделяя общие для некоторого множества систем закономерности, описывающие изменение их состояния при различных управляющих воздействиях, мы приходим к понятию абстрактной кибернетической системы. Ее составляющими являются не конкретные предметы, а абстрактные элементы, характеризующиеся определенными свойствами, общими для широкого класса объектов.

Поскольку под кибернетическими системами понимаются управляемые системы, в них должен присутствовать механизм, осуществляющий функции управления. Чаще всего этот механизм реализуется в виде органов, специально предназначенных для управления, рис. 1.44.

Рис. 1. Схематическое изображение кибернетической системы
в виде совокупности управляющей (А) и управляемой (В) частей

Стрелками на рисунке обозначены воздействия, которыми обмениваются части системы. Стрелка, идущая от управляющей части системы к управляемой, обозначает сигналы управления. Управляющая часть системы, вырабатывающая сигналы управления, называется управляющим устройством. Управляющее устройство может вырабатывать сигналы управления, обычно на основе информации о состоянии управляемой системы (изображены на рисунке стрелкой от управляемой части системы к управляющей ее части), о требуемом ее состоянии, о возмущающих воздействиях. Совокупность правил, по которым информация, поступающая в управляющее устройство, перерабатывается в сигналы управления, называется алгоритмом управления.

На основе введенных понятий можно определить понятие “управление”. Управление - это воздействие на объект, выбранное из множества возможных воздействий на основе имеющейся для этого информации, улучшающее функционирование или развитие данного объекта.

В системах управления решаются четыре основных типа задач управления: 1) регулирование (стабилизация), 2) выполнение программы, 3) слежение и 4) оптимизация.

Системы, в которых для формирования управляющих воздействий не используется информация о значениях, которые управляемые величины принимают в процессе управления, называются разомкнутыми системами управления. Структура такой системы показана на рис. 2.

Рис. 2. Алгоритм управления, реализуемый управляющим устройством УУ, которое обеспечивает слежение за возмущением М и компенсацию этого возмущения, без использования управляемой величины Х

Напротив, в замкнутых системах управления для формирования управляющих воздействий используется информация о значении управляемых величин. Структура такой системы показана на рис.3.

Обратная связь является одним из важнейших понятий кибернетики, помогающим понять многие явления, которые происходят в управляемых системах различной природы. Обратную связь можно обнаружить при изучении процессов, протекающих в живых организмах, экономических структурах, системах автоматического регулирования. Обратная связь, увеличивающая влияние входного воздействия на управляемые параметры системы, называется положительной, уменьшающая влияние входного воздействия - отрицательной.

Рис. 3. Связь между выходными параметрами А" и входными У одного и того же элемента управляемой системы называется обратной связью

Положительная обратная связь используется во многих технических устройствах для усиления, увеличения значений входных воздействий. Отрицательная обратная связь используется для восстановления равновесия, нарушенного внешним воздействием на систему.

3. Функции человека и машины в системах управления

Хорошо изученной сферой применения кибернетических методов является технологическая и производственная сфера, управление промышленным предприятием. Задачи, возникающие в управлении предприятием среднего и большого масштаба, уже весьма сложны, но допускают решение с использованием электронно-вычислительных машин. Системы управления хозяйством предприятий или территорий (регионов, городов), использующие ЭВМ для переработки и хранения информации, получили название автоматизированных систем управления (АСУ). По своему характеру такие системы являются человеко-машинными, т.е. наряду с использованием мощных компьютеров предполагающими наличие в них человека с его естественным интеллектом. В человеко-машинных системах предполагается следующее разделение функций человека и машины: машина хранит и перерабатывает большие массивы информации, осуществляет информационное обеспечение принятия решений человеком; человек принимает управленческие решения.

Чаще в человеко-машинных системах компьютеры выполняют рутинную, нетворческую, трудоемкую переработку информации, освобождая человеку время для творческой деятельности. Однако целью развития компьютерной (информационной) технологии управления является полная автоматизация деятельности, включающая частичное или полное освобождение человека от необходимости принятия решений. Это связано не только со стремлением разгрузить человека, но и с тем, что развитие техники и технологий привело к ситуациям, когда человек в силу присущих ему физиологических и психических ограничений просто не успевает принимать решения в реальном масштабе времени протекания процесса, что грозит катастрофическими последствиями. Примеры - необходимость включения аварийной защиты ядерного ректора, реакция на события, проистекающие при запусках космических аппаратов и т.д.

Система, заменяющая человека, должна будет обладать интеллектом, в какой-то мере подобным человеческому - искусственным интеллектом. Исследовательское направление в области систем искусственного интеллекта также относится к кибернетике, однако вследствие его важности для перспектив всей информатики в целом мы рассмотрим его в отдельном параграфе.

4. Направления исследований и разработок в области систем искусственного интеллекта

Научное направление, связанное с машинным моделированием человеческих интеллектуальных функций - искусственный интеллект - возникло в середине 60-х годов XX столетия. Его возникновение непосредственно связано с общим направлением научной и инженерной мысли, которое привело к созданию компьютера -направлением на автоматизацию человеческой интеллектуальной деятельности, на то, чтобы сложные интеллектуальные задачи, считавшиеся прерогативой человека, решались техническими средствами.

Говоря о сложных интеллектуальных задачах следует понимать, что всего 300 -400 лет назад перемножение больших чисел вполне относилось к таковым; однако, усвоив в детстве правило умножения столбиком, современный человек пользуется им не задумываясь, и вряд ли эта задача сегодня является “сложной интеллектуальной”. По-видимому, в круг таковых следует включить те задачи, для решения которых нет “автоматических” правил, т.е. нет алгоритма (пусть даже и очень сложного), следование которому всегда приводит к успеху. Есди для решения задачи, которая нам сегодня представляется относящейся к указанному кругу, в будущем придумают четкий алгоритм, она перестанет быть “сложной интеллектуальной”.

Несмотря на свою краткость, история исследований и разработок систем искусственного интеллекта может быть разделена на четыре периода:

• 60-е - начало 70-х годов XX века - исследования по “общему интеллекту”, попытки смоделировать общие интеллектуальные процессы, свойственные человеку: свободный диалог, решение разнообразных задач, доказательство теорем, различные игры (типа шашек, шахмат и т.д.), сочинение стихов и музыки и т.д.;

• 70-е годы - исследования и разработка подходов к формальному представлению знаний и умозаключений, попытки свести интеллектуальную деятельность к формальным преобразованиям символов, строк и т.д.;

• с конца 70-х годов - разработка специализированных на определенных предметных областях интеллектуальных систем, имеющих прикладное практическое значение (экспертных систем);

• 90-е годы - фронтальные работы по созданию ЭВМ 5-го поколения, построенных на иных принципах, чем обычные универсальные ЭВМ, и программного обеспечения для них.

В настоящее время “искусственный интеллект” - мощная ветвь информатики, имеющая как фундаментальные, чисто научные основы, так и весьма развитые технические, прикладные аспекты, связанные с созданием и эксплуатацией работоспособных образцов интеллектуальных систем. Значение этих работ для развития информатики таково, что именно от их успеха зависит появление ЭВМ нового 5-го поколения. Именно этот качественный скачок возможностей компьютеров -обретение ими в полной мере интеллектуальных возможностей - положен целью развития вычислительной техники в ближайшей перспективе и является признаком компьютерной техники нового поколения.

Любая задача, для которой не известен алгоритм решения, может быть отнесена к сфере искусственного интеллекта. Примерами могут быть игра в шахматы, медицинская диагностика, составление резюме текста или перевода его на иностранный язык - для решения этих задач не существует четких алгоритмов. Еще две характерные особенности задач искусственного интеллекта: преобладающее использование информации в символьной (а не в числовой) форме и наличие выбора между многими вариантами в условиях неопределенности.

Перечислим отдельные направления, где применяются методы искусственного интеллекта.

1. Восприятие и распознавание образов (задача, упоминавшаяся ранее, как одно из направлений кибернетики). Теперь под этим понимаются не просто технические системы, воспринимающие визуальную и звуковую информацию, кодирующие и размещающие ее в памяти, проблемы понимания и логического рассуждения в процессе обработки визуальной и речевой информации.

2. Математика и автоматическое доказательство теорем.

3. Игры. Как и формальные системы в математике, игры, характеризующиеся конечным числом ситуаций и четко определенными правилами, с самого начала исследований по искусственному интеллекту привлекли к себе внимание как предпочтительные объекты исследования, полигон для применения новых методов. Интеллектуальными системами был быстро достигнут и превзойден уровень человека средних способностей, однако уровень лучших специалистов не достигнут до сих пор. Возникшие трудности оказались характерными и для многих других ситуаций, так как в своих “локальных” действиях человек использует весь объем знаний, который он накопил за всю свою жизнь.

4. Решение задач. В данном случае понятие “решение” используется в широком смысле, относится к постановке, анализу и представлению конкретных ситуаций, а рассматриваемые задачи - те, которые встречаются в повседневной жизни, для решения которых требуется изобретательность и способность к обобщению.

5. Понимание естественного языка. Здесь ставится задача анализа и генерации текстов, их внутреннего представления, выявление знаний, необходимых для понимания текстов. Трудности связаны, в частности, с тем, что значительная часть информации в обычном диалоге не выражается определенно и ясно. Предложениям естественного языка присуща:

• неполнота;

• неточность;

• нечеткость;

• грамматическая некорректность;

• избыточность;

• зависимость от контекста;

• неоднозначность.

Однако такие свойства языка, являющегося результатом многовекового исторического развития, служат условием функционирования языка как универсального средства общения. Вместе с тем, понимание предложений естественного языка техническими системами с трудом поддается моделированию из-за- этих особенностей языка (да и вопрос о том, что такое “понимание”, нуждается в размышлениях). В технических системах должен использоваться формальный язык, смысл предложений которого однозначно определяется их формой. Перевод с естественного языка на формальный является нетривиальной задачей.

6. Выявление и представление знаний экспертов в экспертных системах. Экспертные системы - интеллектуальные системы, вобравшие в себя знания специалистов в конкретных видах деятельности - имеют большое практическое значение, с успехом применяются во многих областях, таких как автоматизированное проектирование, медицинская диагностика, химический анализ и синтез и т.д.

Во всех этих направлениях главные трудности связаны с тем, что недостаточно изучены и поняты принципы человеческой интеллектуальной деятельности, процесс принятия решений и решение задач. Если в 60-х годах широко обсуждался вопрос “может ли компьютер мыслить”, то теперь вопрос ставится иначе: “достаточно ли хорошо человек понимает, как он мыслит, чтобы передать эту функцию компьютеру”? В силу этого, работы в области искусственного интеллекта тесно соприкасаются с исследованиями по соответствующим разделам психологии, физиологии, лингвистики.

5. Представление знаний в системах искусственного интеллекта

Основной особенностью интеллектуальных систем является то, что они основаны на знаниях, а вернее, на некотором их представлении. Знания здесь понимаются как хранимая (с помощью ЭВМ) информация, формализованная в соответствии с некоторыми правилами, которую ЭВМ может использовать при логическом выводе по определенным алгоритмам. Наиболее фундаментальной и важной проблемой является описание смыслового содержания проблем самого широкого диапазона, т.е. должна использоваться такая форма описания знаний, которая гарантировала бы правильную обработку их содержимого по некоторым формальным правилам. Эта проблема называется проблемой представления знаний.

В настоящее время наиболее известны три подхода к представлению знаний в обсуждаемых системах:

• продукционная и логическая модели;

• семантические сети;

• фреймы.

Продукционные правила - наиболее простой способ, представления знаний. Он основан на представлении знаний в форме правил, структурированных в соответствии с образцом “ЕСЛИ - ТО”. Часть правила “ЕСЛИ” называется посылкой, а “ТО” - выводом или действием.

Из представленных знаний можно формально вывести определенное заключение. При этом считается, что одинаковые переменные, входящие в разные правила, независимы; объекты, имена которых эти переменные могут получать, никак не связаны между собой. Формализованная процедура, использующая сопоставление (при котором устанавливается, совпадают ли между собой две формы представления, включая подстановку возможных значений переменных), поиск в базе знаний, возврат к исходному состоянию при неудачной попытке решения, представляет собой механизм выводов.

Простота и наглядность представления знаний с помощью продукций обусловила его применение во многих системах, которые называются продукционными.

Семантическая сеть - иной подход к представлению знаний, который основан на изображении понятий (сущностей) с помощью точек (узлов) и отношений между ними с помощью дуг на плоскости. Семантические сети способны отображать структуру знаний во всей сложности их взаимосвязей, увязать в единое целое объекты и их свойства. В качестве примера может быть приведена часть семантической сети, относящейся к понятию “фрукты” (рис. 4).

Рис. 4. Пример семантической сети

Фреймовая система имеет все свойства, присущие языку представления знаний, и одновременно являет собой новый способ обработки информации. Слово “фрейм” в переводе с английского языка означает “рамка”. Фрейм является единицей представления знаний об объекте, которую можно описать некоторой совокупностью понятий и сущностей. Фрейм имеет определенную внутреннюю структуру, состоящую из множества элементов, называемых слотами. Каждый слот, в свою очередь, представляется определенной структурой данных, процедурой, или может быть связан с другим фреймом.

Фрейм: человек

Класс:

Животное

Структурный элемент:

Голова, шея, руки, ноги,...

Рост:

30-220 см

Масса:

1 - 200 кг

Хвост:

Нет

Фрейм аналогии:

Обезьяна

Существуют и другие, менее распространенные подходы к представлению знаний в интеллектуальных системах, в том числе гибридные, на основе уже описанных подходов.

Перечислим главные особенности машинного представления данных.

1. Внутренняя интерпретируемость. Обеспечивается наличием у каждой информационной единицы своего уникального имени, по которому система находит ее для ответа на запросы, в которых это имя упомянуто.

2. Структурированность. Информационные единицы должны обладать гибкой структурой, для них должен выполняться “принцип матрешки”, т.е. вложенности одних информационных единиц в другие, должна существовать возможность установления соотношений типа “часть - целое”, “род - вид”, “элемент - класс” между отдельными информационными единицами.

3. Связность. Должна быть предусмотрена возможность установления связей различного типа между информационными единицами, которые бы характеризовали отношения между информационными единицами. Эти отношения могут быть как декларативными (описательными), так и процедурными (функциональными).

4. Семантическая метрика. Позволяет устанавливать ситуационную близость информационных единиц, т.е. величину ассоциативной связи между ними. Такая близость позволяет выделять в знаниях некоторые типовые ситуации, строить аналогии.

5. Активность. Выполнение действий в интеллектуальной системе должно инициироваться не какими-либо внешними причинами, а текущим состоянием представленных в системе знаний. Появление новых фактов или описание событий, установление связей должны стать источником активности системы.

6. Интеллектуальный интерфейс информационной системы

Анализ развития средств вычислительной техники позволяет утверждать, что она постоянно эволюционирует в двух направлениях. Первое из них связано с улучшением параметров существующих компьютеров, повышением их быстродействия, увеличением объемов их оперативной и дисковой памяти, а также с совершенствованием и модификацией программных средств, ориентированными на повышение эффективности выполнения ими своих функций. Это можно назвать развитием по горизонтали.

Второе направление определяет изменения в технологии обработки информации, приводящие к улучшению использования компьютерных систем. Развитие в этом направлении связано с появлением новых типов компьютеров и качественно новых программных средств, дополняющих уже существующие. Такое развитие можно назвать развитием по вертикали.

Развитие программных средств идет по пути увеличения их дружественности, т.e. такого упрощения управления ими, что от пользователя не требуется специальной подготовки, и система создает максимально комфортные условия для его работы. Основной ориентир в совершенствовании вычислительных систем - превращение их в удобного партнера конечного пользователя при решении задач в ходе его профессиональной деятельности.

Для обеспечения наибольшей дружественности интерфейса программного средства с пользователем первый должен стать интеллектуальным. Интеллектуальный интерфейс, обеспечивающий непосредственное взаимодействие конечного пользователя и компьютера при решении задачи в составе человеко-машинной системы, должен выполнять три группы функций:

• обеспечение для пользователя возможности постановки задачи для ЭВМ путем сообщения только ее условия (без задания программы решения);

• обеспечение для пользователя возможности формирования сред решения задачи с использованием только терминов и понятий из области профессиональной деятельности пользователя, естественных форм представления информации;

• обеспечение гибкого диалога с использованием разнообразных средств, в том числе не регламентируемых заранее, с коррекцией возможных ошибок пользователя.

Структура системы (рис. 5), удовлетворяющей требованиям новой технологии решения задач, состоит из трех компонент:

исполнительной системы, представляющей собой совокупность средств, обеспечивающих выполнение программ;

базы знаний, содержащей систему знаний о проблемной среде;

интеллектуального интерфейса, обеспечивающего возможность адаптации вычислительной системы к пользователю.

Рис. 5. Структура современной системы решения прикладных задач

Такая система существенно отличается от создававшихся на более ранних этапах развития информатики и вычислительной техники. Путь реализации новейших информационных технологий предполагает использование вычислительных систем, построенных на основе представления знаний предметной области задачи и интеллектуального интерфейса.

7. Структура современной системы решения прикладных задач

Разработки систем искусственного интеллекта шли сначала по пути моделирования общих интеллектуальных функций индивидуального сознания. Однако, развитие вычислительной техники и программного обеспечения в 90-х годах опровергает прогнозы предыдущих десятилетий о скором переходе к ЭВМ 5-го поколения. Интеллектуальные функции основной массы программных систем общения на естественном языке пока не находят широкого внедрения в промышленных масштабах.

Характерную инфляцию претерпело такое понятие, как “новая информационная технология”. Первоначально это понятие означало интеллектуальный интерфейс к базе данных, позволяющий прикладным пользователям общаться с ней непосредственно на естественном языке. Ныне под “новыми информационными технологиями” понимают просто технологии, существенно использующие вычислительную технику в обработке информации, в том числе основанные на применении текстовых и табличных процессоров, а также информационных систем.

Столкнувшись с непреодолимыми проблемами, разработчики систем, обладающих “общим” искусственным интеллектом, пошли по пути все большей и большей специализации, вначале по направлению к экспертным системам, затем - к отдельным очень специфичным интеллектуальным функциям, встроенным в инструментальные программные средства, не считавшиеся до настоящего времени сферой разработок по искусственному интеллекту. Например, такие системы сейчас часто обладают возможностями аналитических математических вычислений, перевода технических и деловых текстов, распознавания текста при вводе сканером, синтаксического анализа фраз и предложений, самонастраиваемостью и т.д.

Парадигма исследований и разработок в области искусственного интеллекта постепенно пересматривается. По-видимому, возможности скорого развития программных систем, моделирующих интеллектуальные функции индивидуального сознания, в значительной мере исчерпаны. Необходимо обратить внимание на новые возможности, которые открывают в отношении общественного сознания информационные системы и сети. Развитие вычислительных систем и сетей ведет” по-видимому, к созданию нового типа общественного сознания, в которое информационные средства будут органично встроены как технологическая среда обработки и передачи информации. После этого человечество получит именно гибридный человеко-машинный интеллект не столько в масштабе индивидуального сознания, сколько в сфере социальной практики.