Клавиатура

Клавиатура - одно из важнейших устройств компьютера, используемое для ввода в систему команд и данных. С появлением Windows 95 была создана модифицированная версия 101-клавишной клавиатуры, получившая название 104-клавишной расширенной клавиатуры Windows.

Существуют такие основные типы клавиатур:

Существует несколько вариантов расширенной клавиатуры, но все они взаимозаменяемы и имеют аналогичные электрические параметры. IBM и ее дочерняя фирма Lexmark, специализирующаяся на производстве клавиатур и принтеров, выпускают множество разновидностей этой клавиатуры, в том числе со встроенными устройствами позиционирования и новыми раскладками. Большинство расширенных клавиатур этого типа подключается к компьютеру с помощью 5-контактного разъема DIN, но в новых вариантах чаще используется 6-контактный разъем mini-DIN, который устанавливается во многих системах, например PS/2. Несмотря на различие разъемов, сами клавиатуры идентичны; при желании можно заменить их соединительные кабели или использовать переходной разъем.

101-клавишная клавиатура может быть условно разделена на следующие области:

Рис. 1. 101-клавишная клавиатура

Раскладка 101-клавишной клавиатуры аналогична раскладке клавиатуры пишущей машинки (за исключением клавиши "Enter"). Клавиши "Tab", "Caps Lock", "Shift" и "Backspace" больше всех остальных по размеру и расположены так же, как и на пишущей машинке. Клавиши "Ctrl" и "Alt" размещаются по обе стороны от клавиши пробела. Клавиши управления курсором образуют отдельную группу. Дополнительная цифровая клавиатура предназначена для ввода чисел; как и в других PC-клавиатурах, ее можно использовать для управления курсором при отключенном режиме Num Lock. На дополнительную цифровую клавиатуру добавлена клавиша "/" и еще одна клавиша "Enter". Клавиши управления курсором расположены в виде перевернутой буквы "Т". Над ними расположены клавиши "Insert", "Delete", "Home", "End", "PageUp" и "PageDown". Функциональные клавиши, объединенные в группы по четыре, расположены в верхней части клавиатуры. Кроме того, введены две дополнительные функциональные клавиши ("F11" и "F12"), а клавиша "Esc" расположена в верхнем левом углу. Для выполнения самых распространенных операций предусмотрены специальные клавиши "PrintScreen/SysReg", "Scroll Lock" и "Pause/Break". В двуязычных вариантах расширенной клавиатуры установлены 102 клавиши, и раскладка их несколько иная, чем в американской версии.

104-клавишная расширенная клавиатура Windows

Большинство печатающих вслепую обычно терпеть не могут пользоваться мышью, поскольку при этом приходится убирать руку с клавиатуры. Для любителей клавиатуры Windows 95 и Windows 98 создает еще больше проблем, поскольку при работе с ней задействуются обе кнопки мыши. Microsoft выпустила спецификацию Windows-клавиатуры, содержащую новые клавиши и их комбинации. Клавиатура, подобная 101-клавишной, выросла до 104-клавишной с дополнительными левой и правой Windows-клавишами и клавишей "Application" (приложение). Они могут использоваться для получения комбинаций клавиш на уровнях операционной системы или приложения подобно комбинациям с "Ctrl" и "Alt" на 101- клавишной клавиатуре. Собственно для работы с Windows 95/98 и Windows NT/2000 не требуется новых клавиш, но разработчики программного обеспечения наделили специфическими функциями Windows-приложения, в которых будет использоваться новая клавиша "Application" (она выполняет те же функции, что и правая кнопка мыши). В стандартной раскладке Windows-клавиатуры клавиша пробела укорочена, две клавиши Windows расположены слева и справа ("WIN"), а клавиша "Application" - справа. Клавиши "WIN" вызывают меню Пуск (Start), по которому можно перемещаться с помощью клавиш управления курсором. Клавиша "Application" эквивалентна нажатию правой кнопки мыши; в большинстве приложений она позволяет перейти в контекстно-зависимое меню. Несколько комбинаций с клавишей "WIN" связано с макрокомандами. Например, нажимая комбинацию клавиш "WIN+E", можно запустить программу Проводник Windows (Windows Explorer).

Рис. 2. 104-клавишная клавиатура

Клавиатуры с дополнительными функциональными возможностями

Существуют клавиатуры, отличающиеся от стандартных дополнительными функциональными возможностями. Они могут быть как простыми (со встроенными калькулятором и часами), так и сложными (со встроенными устройствами позиционирования (манипуляторами), особой раскладкой или формой и возможностью перепрограммирования клавиш).

Беспроводные клавиатуры

В последнее время большинством производителей выпускается новый тип клавиатур - беспроводные. Такая клавиатура содержит инфракрасный или радиопередатчик, а приемник с помощью кабеля подключается к стандартному разъему клавиатуры системной платы. Естественно, такая клавиатура существенно дороже стандартной и чаще всего используется в домашних системах.

Формирование картинки: технология ЭЛТ

В большинстве современных мониторов основным элементом, формирующим картинку, является электронно-лучевая трубка, или ЭЛТ. (Английский аналог – CRT, Cathode Ray Tube.) На данный момент технология ЭЛТ обеспечивает персональным компьютерам наилучшее качество изображения при наименьших затратах. В будущем, возможно, ее заменят плазменные, TFT или другие технологии, но сейчас они еще слишком дороги и пока находят применение в ноутбуках или в специальных мониторах, предназначенных для решения производственных задач.

Простейший вид ЭЛТ – это монохромные трубки (цвет фосфора на экране может быть белым, зеленым либо желтым). Для формирования изображения на экране электронный луч сканирует по экрану слева направо и сверху вниз. Совокупность точек экрана, формирующих изображение, называется растром. Элементы текста или графики создаются включением либо выключением точек растра.

Конструкция ЭЛТ-мониторов

Самым важным элементом монитора является кинескоп, называемый также электронно-лучевой трубкой (основные конструкционные узлы кинескопа показаны на рис 3). Кинескоп состоит из герметичной стеклянной трубки, внутри которой находится вакуум, то есть весь воздух удален. Один из концов трубки узкий и длинный - это горловина, а другой - широкий и достаточно плоский - это экран. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами. Заметим, что иногда люминофор называют фосфором, но это не верно, т.к. люминофор, используемый в покрытии ЭЛТ, ничего не имеет общего с фосфором. Более того, фосфор "светится" в результате взаимодействия с кислородом воздуха при окислении до P2O5 и "свечение" происходит небольшое количество времени (кстати, белый фосфор - сильный яд).

Рис. 3. Устройство ЭЛТ-монитора

Для создания изображения в ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы (см. рис. 4). Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные. Последние предпочтительнее, поскольку создают пониженный уровень излучения.

Рис. 4. Устройство ЭЛТ-монитора (вид сбоку)

Отклоняющая система состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а другие две - в вертикальной. Изменение магнитного поля возникает под действием переменного тока, протекающего через катушки и изменяющегося по определенному закону (это, как правило, пилообразное изменение напряжения во времени), при этом катушки придают лучу нужное направление. Путь электронного луча на экране схематично показан на рис. 4. Сплошные линии - это активный ход луча, пунктир - обратный.

Рис. 5. Ход луча в ЭЛТ-мониторе

Частота перехода на новую линию называется частотой горизонтальной (или строчной) развертки. Частота перехода из нижнего правого угла в левый верхний называется частотой вертикальной (или кадровой) развертки. Амплитуда импульсов перенапряжения на катушках строчной развертки возрастает с частотой строк, поэтому этот узел оказывается одним из самых напряженных мест конструкции и одним из главных источников помех в широком диапазоне частот. Мощность, потребляемая узлами строчной развертки, также является одним из серьезных факторов учитываемых при проектировании мониторов. После отклоняющей системы поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате электроны приобретают большую энергию, часть из которой расходуется на свечение люминофора.

Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT мониторе используется три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся. Известно, что глаза человека реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз не всегда может различить их). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов - триады).

Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.

Рис. 6. Образование белого цвета

Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно различие в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой. Итак, каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов от разных производителей, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.

Существуют две основные технологии производства цветных ЭЛТ. Это так называемые технологии теневой маски и апертурной решетки. Теневая маска – самая распространенная технология при производстве трубок.

Вкратце о том, зачем вообще нужна маска. Три электронные пушки, расположенные в основании горловины обеспечивают свечение точек люминофора трех основных цветов. Чтобы электронный луч каждой пушки попадал на люминофор только одного какого-либо цвета и не возбуждал другие точки, доступ к ним преграждается теневой маской, которая устанавливается перед экраном и представляет собой тонкий лист с отверстиями. От качества отверстий и поверхности маски зависят четкость изображения и чистота его цветов.

Маски бывают двух типов: теневые и щелевые, причем более распространены первые.

Теневая маска (shadow mask) используется в большинстве мониторов производимых LG, Samsung, Viewsonic, Hitachi, Belinea, Panasonic, Daewoo, Nokia и др. Как выглядит теневая маска и ход лучей через нее вы можете видеть на рисунке. Нужно лишь заметить, что минимальное расстояние между люминофорными элементами одинакового цвета называется шагом точки (dot pitch) и является оценочным индексом качества изображения. Шаг точки обычно измеряется в миллиметрах (мм). Чем меньше значение шага точки, тем выше качество воспроизводимого на мониторе изображения.

Есть и еще один вид теневой маски – щелевая (slot mask). Как видно, люминофорные элементы расположены в вертикальных ячейках, а маска сделана из вертикальных линий. Вертикальные полосы разделены на ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов. Минимальное расстояние между двумя ячейками называется щелевой шаг (slot pitch). Естественно, чем меньше значение шага щели, тем выше качество изображения на мониторе. Применяется этот тип маски фирмами NEC (CromaClear) и Panasonic (Panaflat, Pureflat).

Мониторы, построенные на базе ЭЛТ с теневой маской, обладают следующими достоинствами:

– четкое формирование символов на экране, особенно при малых размерах шрифта;

– точное отображение цвета, что особенно важное при подготовке макетов для последующей печати;

– наилучшее соотношение “цена/производительность”.

Третий тип маски – апертурная решетка (Aperture Grill). Это решение имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. По этой технологии производятся трубки Sony Trinitron и Mitsubishi Diamondtron. Трубки, произведенные по этой технологии, имеют стабилизационные нити, которые хорошо видны, особенно при светлом фоне изображения на мониторе. Благодаря меньшему расстоянию между точками теневая маска теоретически обеспечивает более высокое разрешение, а следовательно, и большую четкость деталей изображения, чем апертурная решетка. Однако трубки с апертурными решетками, в меньшей степени затеняющими электронный луч, чем теневые маски, отличаются повышенной контрастностью картинки и насыщенностью красок. Их недостатками являются тонкие, но хорошо заметные на светлом фоне экрана тени, отбрасываемые двумя поперечными металлическими нитями, которые стабилизируют апертурную решетку, а главное, худшее, чем в случае применения теневой маски, качество сведения лучей. Выбор типа трубки является делом личного вкуса и решаемых задач.

Мониторы с теневой маской, как правило, имеют несколько уровней яркости белого цвета. Центр экрана может оказаться заметно ярче, чем углы. При выборе монитора полезно иметь в виду, что этого недостатка нет у мониторов, оснащенных обратной связью с цифровой коррекцией.

И еще. Сравнение шага апертурной решетки с шагом щелевой или теневой маски некорректно ввиду особенностей их измерения: шаг точек трубки с теневой маской измеряется по диагонали, а апертурной решетки – по горизонтали. При одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой.

Хотя ЭЛТ более, чем любой другой компонент, определяет характеристики монитора, но и от качества исполнения таких элементов, как отклоняющая система и видеоусилитель, тоже многое зависит. Поэтому один только факт, что мониторы какого-то производителя (например, Nokia) изготавливаются на базе той же ЭЛТ (трубка Trinitron), что и мониторы другого производителя (SONY), вовсе не говорит об идентичности характеристик этих моделей. На самом деле каждая модель хороша по-своему. Производители ЭЛТ различных типов, естественно, подчеркивают преимущества своей собственной технологии. Многообразие ЭЛТ, представленных на рынке, и обилие мониторов, изготавливаемых с использованием технологически разных ЭЛТ, свидетельствует о том, что каждое решение имеет свои привлекательные стороны и свои недостатки. На самом деле многое здесь зависит от пристрастий пользователя и от специфики его работы.

Размер диагонали и видимой области

Видимая область и диагональ экрана это не одно и то же. Например, у монитора с диагональю 17" видимая область может находиться в интервале от 15 с небольшим до 16,2 дюйма. Естественно, чем больше видимая область, тем лучше, однако ориентироваться по паспортным данным трудно, так как замеряют этот параметр разные производители по разному – одни вытягивают изображение до предела, а другие – оставляют по краям просвет.

Размер диагонали экрана монитора следует выбирать исходя из предназначения.

Сегодня на рынке предлагаются модели с диагоналями от 15 до 21 дюйма. Не стоит рассчитывать на многое при приобретении 15-дюймового монитора. Максимальное разумное разрешение, которое рекомендуется для него – 800х600 пикселей. В рекламных проспектах часто говорится о разрешениях в 1280х1024. Это разрешение конечно можно использовать, но вот только изображение будет крайне мелким. Здесь еще и частоту кадров вспомнить надо бы, но до нее мы доберемся позднее. Если все же вы не можете позволить себе ничего покрупнее, то приобретайте пятнадцатку. На ней вполне возможно решение проблем насущных. Из плюсов 15-ти дюймового монитора стоит отметить, что для его нормальной работы подойдет практически любая видеокарта.

На следующей, более высокой ступени находятся 17-дюймовые мониторы, которые уже успели стать офисным стандартом де-факто. Если вы много времени проводите за компьютером и можете себе позволить приобретение семнадцатки, то вам просто необходимо это сделать (если, конечно, не можете позволить себе что-то побольше). Для этих мониторов можно рекомендовать разрешение 1024х768 для комфортной работы. С комфортом можно использовать и макинтошевское 1152х864. Обеспечить отличное качество изображения при высоких разрешениях (1024х786 и больше) может уже значительно меньшее число видеокарт, нежели 800х600. Поэтому приобретая монитор такое разрешение поддерживающий, проследите еще и за тем, что бы в вашей машине стояла хорошая видеокарта, иначе толку от дорогого монитора с сверхсовершенной электроникой не будет никакого.

Для тех, кому было мало семнадцатки, а приобретение 21-дюймового монитора было не по карману, появился промежуточный, так сказать любительский вариант, – 19". Такому монитору под силу разрешение в 1280х1024, но при этом вы можете испытывать одно неудобство: соотношения сторон монитора (4:3) и разрешений по горизонтали и вертикали (5:4) не совпадают. Много удобнее было бы использовать промежуточные режимы, например 1280 х 960, однако они поддерживаются не каждым драйвером видеокарты.

Вершиной являются мониторы с диагональю экрана 21 и 24 дюйма. Этими мониторами поддерживаются разрешения 1600х1200 и выше. Но очень и очень небольшое число карт способны справиться с таким разрешением, причем дело здесь не в скорости, а качестве изображения, которое многие видеокарты на таких разрешениях и при высоких частотах кадровой развертки просто замыливают.

Тип покрытия

Антибликовые покрытия трубки позволяют избавиться от отраженных изображений на экране. Если вы работаете в затемненном помещении, паразитные блики вам не грозят, и можно работать с "пузатым" бликующим монитором. А если вы работаете днем, то можете увидеть на экране монитора без антибликового покрытия все, что находится сзади Вас.

Антистатическое покрытие трубки избавляет от преждевременного загрязнения поверхности экрана. Во время работы при его отсутствии экран монитора притягивает мельчайшие частички пыли, которые удаляются только с помощью специальных средств или смоченной в спирте фланелевой тряпочки. Если электронно-лучевая трубка монитора защищена антистатическим покрытием, то спирт можно использовать для других не менее полезных целей.

Плоский или “кривой”?

Естественное стремление конструкторов получить изображение без малейших геометрических искажений привело к появлению мониторов с абсолютно плоским экраном. Был дан старт очередному микросражению за симпатии и кошельки потребителей под лозунгом “За изображение без искажения”. Потребители вяло отреагировали на революционную технологию. Почему? Да потому что эти модели реально необходимы ограниченному кругу пользователей, например, при работе с CAD/CAM-приложениями. Для игр на домашнем компьютере, работы с офисными приложениями, даже для графики и WEB-дизайна существующие модели с “обычными” кинескопами зачастую не хуже. Более критичным для качества картинки является сведение, фокусировка, муар, светимость монитора, то есть характеристики, напрямую не связанные с плоским экраном. Конечно, у мониторов с плоским экраном есть еще одно преимущество - отсутствие бликов на экране. Однако современные покрытия кинескопов FST значительно снижают уровень отраженного от экрана света, да и при правильной организации рабочего места проблема бликов решается просто.

Итак, вы определились с выбором модели монитора по группе ее характеристик! Теперь нужно четко уяснить мысль, что каждый монитор является уникальным изделием. Поэтому покупать мониторы в нераспакованном виде без предварительного осмотра довольно рискованно. Предпокупочном тестировании мониторов – самый ответственный этап. При выборе конкретного экземпляра следует тщательно проверять характеристики из нижеперечисленной группы, которые индивидуальны для каждого отдельного устройства:

1. сведение лучей - отсутствие артефактов (радужных полосок) в центре и по углам экрана;

2. качество фокусировки - одинаковая четкость в центре и по краям экрана;

3. правильная геометрия изображения - отсутствие параллелограммного, трапециидального, подушкообразного искажения растра, вращения и изменения линейности изображения;

4. отсутствие муара - чаще всего проявляется в виде гребней, волн, разводов в основном при отображении чередующихся контрастных линий при высоком разрешении монитора;

5. цветопередача, яркость и контрастность изображения.

Не забывайте еще и о ваших субъективных ощущениях! Если вам кажется, что картинка на экране неестественная и вам неприятно на нее смотреть, то поглядите другой экземпляр или посмотрите другую модель из сформированного ранее списка.

Не стоит также забывать также и о технической поддержке, потому что мониторы иногда ломаются и чинить их где-то надо.

LCD-мониторы

Довольно перспективны для широкого применения мониторы, в которых изображение формируется на основе управления свойствами жидких кристаллов. Это LCD-мониторы (от Liquid Crystal Display – жидкокристаллический экран). Такие мониторы значительно отличаются от мониторов на электронно-лучевых трубках по принципу работы. Вместо электронного луча, возбуждающего люминофор, в этих дисплеях для воздействия на жидкие кристаллы, помещенные между двумя слоями стекла, используется электрический заряд. В результате получается устройство с существенно другими потребительскими свойствами: малое потребление энергии, отсутствие геометрических искажений, плоская конструкция.

Плоские панели

Современные ЖК мониторы также называют плоскими панелями, активными матрицами двойного сканирования, тонкопленочными транзисторами. Идея ЖК мониторов витала в воздухе более 30 лет, но проводившиеся исследования не приводили к приемлемому результату, поэтому ЖК мониторы не завоевали репутации устройств, обеспечивающих хорошее качество изображения. Сейчас они становятся популярными – всем нравится их изящный вид, тонкий стан, компактность, экономичность (15-30 ватт), кроме того, считается, что только обеспеченные и серьезные люди могут позволить себе такую роскошь.

Время идет, цены падают, а ЖК мониторы становятся все лучше и лучше. Теперь они обеспечивают качественное контрастное, яркое, отчетливое изображение. Именно по этой причине пользователи переходят с традиционных ЭЛТ-мониторов на жидкокристаллические. Раньше жидкокристаллические технологии были медленнее, они не были настолько эффективными, и их уровень контрастности был низок. Первые матричные технологии, так называемые пассивные матрицы, вполне неплохо работали с текстовой информацией, но при резкой смене картинки на экране оставались так называемые “призраки”. Поэтому такого рода устройства не подходили для просмотра видеофильмов и игр. Сегодня на пассивных матрицах работает большинство черно-белых портативных компьютеров, пейджеры и мобильные телефоны. Так как ЖК технология адресует каждый пиксель отдельно, четкость получаемого текста выше в сравнении с ЭЛТ-монитором. Отметим, что на ЭЛТ-мониторах при плохом сведении лучей пиксели, из которых состоит изображение, размываются.

Существует два вида ЖК мониторов: DSTN (dual-scan twisted nematic – кристаллические экраны с двойным сканированием) и TFT (thin film transistor – на тонкопленочных транзисторах), также их называют соответственно пассивными и активными матрицами. Такие мониторы состоят из следующих слоев: поляризующего фильтра, стеклянного слоя, электрода, слоя управления, жидких кристаллов, ещё одного слоя управления, электрода, слоя стекла и поляризующего фильтра.

В первых компьютерах использовались восьмидюймовые (по диагонали) пассивные черно-белые матрицы. С переходом на технологию активных матриц, размер экрана вырос. Практически все современные ЖК мониторы используют панели на тонкопленочных транзисторах, обеспечивающих яркое, четкое изображение значительно большего размера.

Как работает ЖК монитор?

Поперечное сечение панели на тонкопленочных транзисторах представляет собой многослойный бутерброд (рис. 7). Крайний слой любой из сторон выполнен из стекла. Между этими слоями расположен тонкопленочный транзистор, панель цветного фильтра, обеспечивающая нужный цвет – красный, синий или зеленый, и слой жидких кристаллов. Вдобавок ко всему существует флуоресцентная подсветка, освещающая экран изнутри.

Рис. 7. Устройство ЖК-монитора

При нормальных условиях, когда нет электрического заряда, жидкие кристаллы находятся в аморфном состоянии. В этом состоянии жидкие кристаллы пропускают свет. Количеством света, проходящего через жидкие кристаллы, можно управлять с помощью электрических зарядов – при этом изменяется ориентация кристаллов.

Как и в традиционных электроннолучевых трубках, пиксель формируется из трех участков – красного, зеленого и синего. А различные цвета получаются в результате изменения величины соответствующего электрического заряда (что приводит к повороту кристалла и изменению яркости проходящего светового потока).

TFT экран состоит из целой сетки таких пикселей, где работой каждого цветового участка каждого пикселя управляет отдельный транзистор. Именно здесь стоит поговорить о разрешении. Для нормального обеспечения экранного разрешения 1024х768 (режим SVGA) монитор должен располагать именно таким количеством пикселей.

Почему именно ЖК?

ЖК-мониторы обладают совершенно иным стилем. В традиционных электронно-лучевых мониторах формообразующим фактором был кинескоп. Его размер и форму нельзя было изменять. В ЖК мониторах кинескопа нет, поэтому можно производить мониторы любой формы.

Сравните 15-дюймовый ЭЛТ-монитор весом 15 кг с жидкокристаллической панелью глубиной (вместе с подставкой) менее 15 см и весом 5-6 кг. Преимущества таких мониторов понятны. Они не такие громоздкие, не имеют проблем с фокусировкой, а их четкость облегчает работу на высоких разрешениях экрана, пусть даже его размер не так велик. Например, даже 17-дюймовый жидкокристаллический монитор прекрасно показывает в разрешении 1280х1024, тогда как даже для 18-дюймовых ЭЛТ-мониторов это предел.

К тому же, в отличие от ЭЛТ-мониторов, большинство ЖК – цифровые. Это означает, что графической карте с цифровым выходом не придется производить цифроаналоговые преобразования, какие она производит в случае с ЭЛТ-монитором. Теоретически, это позволяет более тщательно передавать информацию о цвете и о местоположении пикселя. В то же время, если подключать ЖК монитор к стандартному аналоговому VGA выходу, придется проводить аналого-цифровые преобразования (ведь ЖК-панели – это цифровые устройства). При этом могут возникнуть различные нежелательные артефакты. Теперь, когда приняты соответствующие стандарты и все большее количество карт обеспечивается цифровыми выходами, ситуация значительно упростится.

Ну, и главный козырь ЖК-мониторов – их относительная безвредность для человека, ввиду отсутствия вредных излучений и мерцания изображения.

Преимущества ЖК мониторов

– ЖК мониторы более экономичные;

– у них нет электромагнитного излучения в сравнении c ЭЛТ-мониторами, и они практически безвредны для человека;

– они не мерцают, как ЭЛТ-мониторы;

– они легкие и не такие объемные;

–у них большая видимая область экрана.

Есть и другие отличия.

Разрешение: ЭЛТ-мониторы могут работать на нескольких разрешениях в полноэкранном режиме, когда ЖК монитор может работать только с одним разрешением. Меньшие разрешения возможны лишь при использовании части экрана, либо с осуществлением интерполяции, которая ухудшает качество картинки.

Измерение диагонали: размер диагонали видимой области ЖК монитора соответствует размеру его реальной диагонали. В ЭЛТ-мониторах реальная диагональ теряет за рамкой монитора более дюйма.

Сведение лучей: в жидкокристаллических мониторах каждый пиксель включается или выключается отдельно, поэтому не возникает никаких проблем со сведением лучей, в отличие от ЭЛТ-мониторов, где требуется безукоризненная работа электронных пушек.

Сигналы: ЭЛТ-мониторы работают на аналоговых сигналах, а ЖК мониторы используют цифровые сигналы.

Отсутствие мерцания: качество изображения на ЖК мониторах выше, а при работе нагрузка на глаза меньше - сказывается ровная плоскость экрана и отсутствие мерцания.

Как выбирать ЖК монитор?

“Внешность обманчива” – это высказывание применимо ко всему, включая и жидкокристаллические мониторы. Большинство неопытных покупателей делают свой выбор под влиянием внешности монитора. При покупке монитора в первую очередь стоит учитывать следующее.

1. Мертвые пиксели – на плоской панели может не работать несколько пикселей. Распознать их нетрудно – они всегда одного цвета. Они возникают в процессе производства и восстановлению не подлежат. Приемлемым считается, когда в мониторе не более трех таких пикселей. В некоторых случаях, такие пиксели могут раздражать – особенно при просмотре фильмов. Поэтому если для вас критично отсутствие мертвых пикселей, перед покупкой конкретного монитора проверьте его.

2. Угол просмотра – если вы когда-либо ранее пользовались ноутбуком, вы, вероятнее всего, знаете, что работать за ЖК монитором лучше всего под определенным углом. У некоторых мониторов значение этого угла довольно велико, таким образом вы можете видеть изображение на мониторе даже в тех случаях, когда монитор не находится непосредственно перед вами. Отметим, что некоторые владельцы ноутбуков находят небольшие значения угла полезными – в тех случаях, когда требуется, чтобы ваш сосед не видел, что происходит на экране вашего монитора. Итак, угол в 120 градусов считается неплохим.

3. Контрастность – сами по себе пиксели не вырабатывают свет, они лишь пропускают свет от подсветки. И темный экран вовсе не означает, что подсветка не работает – просто пиксели блокируют этот свет и не пропускают его сквозь экран. Под контрастностью LCD монитора подразумевается, сколько уровней яркости могут создавать его пикселы. Обычно, контрастность 250:1 считается хорошей.

4. Яркость – насколько ярким может быть ЖК монитор? По правде сказать, яркость жидкокристаллического дисплея может быть выше яркости электронно-лучевой трубки. Но, как правило, яркость ЖК монитора не превышает 225 кандел на квадратный метр – это сопоставимо с яркостью телевизора.

5. Размер экрана – как и у ЭЛТ-мониторов, размер ЖК мониторов определяются диагональю. Однако заметим, что у ЖК мониторов нет черной рамочки, какая имеется у ЭЛТ-мониторов. Поэтому экран в 15.1 дюйма на самом деле показывает 15.1 дюйма (обычно это соответствует разрешению 1024х768). ЖК монитор размером 17.1 дюйма будет работать в разрешении 1280х1024.

Стандарты безопасности

TCO

TCO (The Swedish Confederation of Professional Employees, Шведская Конфедерация Профессиональных Коллективов Рабочих ), членами которой являются 1.3 миллиона шведских профессионалов, организационно состоит из 19 объединений, которые работают вместе с целью улучшения условий работы своих членов. Эти 1.3 млн. членов представляю широкий спектр рабочих и служащих из государственного и частного сектора экономики.

TCO никак не связана с политикой или религией, что является одной из определяющих причин, позволяющей объединяться различным коллективным членам под крышей одной организации.

Учителя, инженеры, экономисты, секретари и няньки - лишь немногие из групп, которые все вместе формируют TCO. Это означает, что TCO отражает большой срез общества, что обеспечивает ей широкую поддержку.

Это была цитата из официального документа TCO. Дело в том, что более 80% служащих и рабочих в Швеции имеют дело с компьютерами, поэтому главная задача TCO - это разработать стандарты безопасности при работе с компьютерами, т.е. обеспечить своим членам и всем остальным безопасное и комфортное рабочее место. Кроме разработки стандартов безопасности, TCO участвует в создании специальных инструментов для тестирования мониторов и компьютеров.

Стандарты TCO разработанны с целью гарантировать пользователям компьютеров безопасную работу. Этим стандартам должен соответствовать каждый монитор, продаваемый в Швеции и в Европе. Рекомендации TCO используются производителями мониторов для создания более качественных продуктов, которые менее опасны для здоровья пользователей. Суть рекомендаций TCO состоит не только в определении допустимых значений различного типа излучений, но и в определении минимально приемлемых параметров мониторов, например, поддерживаемых разрешений, интенсивности свечения люминофора, запас яркости, энергопотребление, шумность и т.д. Более того, кроме требований, в документах TCO приводятся подробные методики тестирования мониторов. Некоторые документы и дополнительную информацию можно найти на официальном сайте TCO: tco-info.com

Рекомендации TCO применяются как в Швеции, так и во всех Европейских странах для определения стандартных параметров, которым должны соответствовать все мониторы. В состав разработанных TCO рекомендаций сегодня входят три стандарта: TCO’92, TCO’95 и TCO’99, нетрудно догадаться, что цифры означают год их принятия.

Большинство измерений во время тестирований на соответствие стандартам TCO проводятся на расстоянии 30 см спереди от экрана и на расстоянии 50 см вокруг монитора. Для сравнения: во время тестирования мониторов на соответствие другому стандарту MPRII все измерения производятся на расстоянии 50 см спереди экрана и вокруг монитора. Это объясняет то, что стандарты TCO более жесткие, чем MPRII.

TCO '92

Стандарт TCO’92 был разработан исключительно для мониторов и определяет величину максимально допустимых электромагнитных излучений при работе монитора, а также устанавливает стандарт на функции энергосбережения мониторов. Кроме того, монитор, сертифицированный по TCO’92, должен соответствовать стандарту на энергопотребление NUTEK и соответствовать Европейским стандартам на пожарную и электрическую безопасность.

TCO '95

Стандарт TCO’92 рассчитан только на мониторы и их характеристики относительно электрических и магнитных полей, режимов энергосбережения и пожарной и электрической безопасности. Стандарт TCO’95 распространяется на весь персональный компьютер, т.е. на монитор, системный блок и клавиатуру, и касается эргономических свойств, излучений (электрических и магнитных полей, шума и тепла), режимов энергосбережения и экологии (с требованием к обязательной адаптации продукта и технологического процесса производства на фабрике). Заметим, что в данном случае термин "персональный компьютер" включает в себя рабочие станции, серверы, настольные и напольные компьютеры, а также компьютеры Macintosh.

Стандарт TCO’95 существует наряду с TCO’92 и не отменяет последний.

Требования TCO’95 по отношению к электромагнитным излучениям мониторов не являются более жесткими, чем по TCO’92.

Кстати, что касается эргономики, то TCO’95 в этом отношении предъявляет более строгие требования, чем международный стандарт ISO 9241

Отметим, что LCD и плазменные мониторы также могут быть сертифицированы по стандартам TCO’92 и TCO’95, как, впрочем, и портативные компьютеры.

К слову, мыши не подлежат сертификации TCO’95.

В разработке стандарта TCO’95 принимали совместное участие четыре организации: TCO, Naturskyddforeinegen, NUTEK и SEMKO AB.

Naturskyddforeinegen (The Swedish Society for Nature Conservation) – Шведское общество защиты природы. Это их знак в виде летящего сокола размещен на эмблеме TCO’95. Интересно было бы узнать транскрипцию названия этой уважаемой организации.

NUTEK (The National Board for Industrial and Technical Development in Sweden) – Шведская правительственная организация, занимающаяся исследованиями в области энергосбережения и эффективного использования энергии.

Компания SEMKO AB занимается тестированием и сертификацией электрических продуктов. Это независимое подразделение группы British Inchcape. SEMKO AB разработала тесты для TCO’95 сертификации и проверки сертифицированных устройств.

TCO '99

TCO’99 предъявляет более жесткие требования, чем TCO’95, в следующих областях: эргономика (физическая, визуальная и удобство использования), энергия, излучение (электрических и магнитных полей), окружающая среда и экология, а также пожарная и электрическая безопасность. Стандарт TCO’99 распространяется на традиционные CRT-мониторы, плоскопанельные мониторы (Flat Panel Displays), портативные компьютеры (Laptop и Notebook), системные блоки и клавиатуры. Спецификации TCO’99 содержат в себе требования, взятые из стандартов TCO’95, ISO, IEC и EN, а также из EC Directive 90/270/EEC и Шведского национального стандарта MPR 1990:8 (MPRII) и из более ранних рекомендаций TCO. В разработке стандарта TCO99 приняли участие TCO, Naturskyddsforeningen и and Statens Energimyndighet (The Swedish National Energy Administration, Шведское Национальное Агентство по Энергетике).

Экологические требования включают в себя ограничения на присутствие тяжелых металлов, броминатов и хлоринатов, фреонов (CFC) и хлорированных веществ внутри материалов.

Любой продукт должен быть подготовлен к переработке, а производитель обязан иметь разработанную политику по утилизации, которая должна исполняться в каждой стране, в которой действует компания.

Требования по энергосбережению включают в себя необходимость того, чтобы компьютер и/или монитор после определенного времени бездействия снижали уровень потребления энергии на одну или более ступеней. При этом период времени восстановления до рабочего режима потребления энергии, должен устраивать пользователя.

MPR II

Это еще один стандарт, разработанный в Швеции, где правительство и неправительственные организации очень сильно заботятся о здоровье населения страны. MPRII был разработан SWEDAC (The Swedish Board for Technical Accreditation) и определяет максимально допустимые величины излучения магнитного и электрического полей, а также методы их измерения. MPRII базируется на концепции о том, что люди живут и работают в местах, где уже есть магнитные и электрические поля, поэтому устройства, которые мы используем, такие, как монитор для компьютера, не должны создавать электрические и магнитные поля, большие чем те, которые уже существуют. Заметим, что стандарты TCO требуют снижения излучений электрических и магнитных полей от устройств настолько, насколько это технически возможно, вне зависимости от электрических и магнитных полей, уже существующих вокруг нас. Впрочем, мы уже отмечали, что стандарты TCO жестче, чем MPRII.

Стандарты - это хорошо, но пользователь может сам помочь сохранению своего здоровья и увеличению комфорта при работе с компьютером. Для этого существуют несколько рекомендаций:

 

Принтеры

Матричные принтеры

Отношение к этим принтерам сегодня неоднозначное.

По качеству печати матричные (иногда их называют игольчатыми) принтеры серьезно уступают струйным и тем более лазерным. Они значительно более шумные, т. к. механизм печати базируется на ударном способе (в разных моделях 9 или 24 ударных игл). Сегодня почти все подобные принтеры монохромные, т. е. позволяют печатать одним цветом. Но далеко не всем и не везде требуется фотографическое качество печати. Существует немало таких практических применений, где гораздо важнее скорость, простота и дешевизна процесса печати. А прочность и надежность принтера нередко оказываются весомее возможности печатать цветными буквами полиграфического качества. Набором таких качеств обладают всем известные матричные принтеры.

Другим преимуществом матричных принтеров является возможность печати на многослойных бланках (распечатка одновременно до 6 копий на листах проложенных через копировальную бумагу). Исключительно дешевы и расходные материалы (краска, лента).

Фирма Epson оставила самый заметный след на мировом рынке матричных принтеров. Epson, выпускающая и струйные и лазерные принтеры, сообщает, что, как ни странно, но спрос на матричные принтеры уже не падает дальше.

Ожидается, что он будет существовать и в дальнейшем, так как остаются места, где требуется печатать документы и при этом необходимо сразу получить несколько копий – платежных поручений, билетов, накладных, счетов, наклеек с адресами или штрих–кодами и других финансовых, торговых и складских документов.

Струйные принтеры

По цене струйные принтеры занимают промежуточное положение между матричными и лазерными, по качеству печати они превосходят матричные, но (пока!) немного уступают лазерным принтерам.

Современные струйные принтеры выводят текст и графические изображения высокого качества и стоят более чем вдвое дешевле лазерных (зачастую около 100$). Кроме того, они компактнее, не так шумят и потребляют меньше электроэнергии, чем их лазерные собратья. Исследования International Data Corporation показывают, что это одна из причин, по которым объемы продаж струйных принтеров растут быстрее, чем печатающих устройств всех других типов.

Однако выбор струйного принтера вместо лазерного влечет за собой необходимость пойти на определенные компромиссы: скорее всего придется пожертвовать быстродействием, и если распечатывать больше нескольких десятков листов в неделю, обходятся дорого из–за высокой стоимости расходных материалов (чернила–картридж).

Подобно лазерной печати, струйный способ является "безударным". Физический принцип технологии, которая обеспечивает струйную печать, подобен принципу действия реактивного двигателя и базируется на выстреливании капли жидкости из специального сопла. Печатающая головка, содержащая чернила, имеет группу мельчайших сопел, каждое из которых в диаметре тоньше человеческого волоса. Позади каждого сопла на миниатюрном резисторе расположен микрорезервуар с чернилами. Когда резистор нагревается проходящим по нему электрическим током, окружающие его чернила вскипают, образуя при этом небольшой пузырек пара. Этот расширяющийся пузырек выталкивает из сопла на бумагу мельчайшие капли чернил, вылетающие со скоростью около 700 км/час. После того, как капля вытолкнута на бумагу, паровой пузырек сжимается, а резистор в это время ожидает следующего нагрева под действием другого токового импульса. Такой цикл занимает долю секунды, позволяя тем самым принтеру печатать быстро и бесшумно (поскольку отсутствуют механические удары по бумаге), выталкивая капельки объемом 4 пиколитра (в самых “продвинутых” моделях).

Значительный прогресс на рынке струйных принтеров в последнее время произошел во многом благодаря усилиям бывшего безусловного лидера в секторе матричных принтеров фирмы Epson. Высокое качество при низкой цене стало реальностью.

С увеличением разрешающей способности и скорости печати выяснилось, что погоня за улучшением этих характеристик сама по себе значительного выигрыша дать не сможет, если не улучшить носитель изображения, то есть бумагу. Любые “хитрые” технологии будут бессильны, если в лоток принтера положить простую офисную бумагу.

Поверхность обычной бумаги имеет волокнистую структуру, что обусловлено технологией ее производства. В итоге миниатюрные, строго рассчитанные по размеру капли начинают растекаться по поверхности самым непредсказуемым образом. Одним из решений этой проблемы является использование пигментных чернил, представляющих собой взвесь дисперсных частиц в бесцветном жидком носителе, поскольку твердые частицы не могут проникнуть во внутренние слои и растечься по волокнам бумаги.

Чернила на пигментной основе позволяют получать яркие и насыщенные оттенки, однако есть у них и определенные недостатки, в частности низкая стойкость к внешним воздействиям.

Технология струйной печати такова, что наилучшего результата можно достичь только при использовании специальной бумаги. Фотографии на обычной бумаге выглядят более блеклыми и менее четкими. В отличие от обычной бумага со специальным покрытием и так называемая фотобумага имеют несколько специальных слоев. Распечатки на ней практически неотличимы от фотографий, полученных при печати с использованием химического фотопроцесса.

Простая бюджетная бумага для струйной печати как правило, имеет плотность 90–105 г/м2, относительно небольшую толщину и прекрасный показатель белизны. Вследствие специальной обработки лицевой или обеих сторон такая бумага более устойчива к капризам чернил и препятствует их растеканию и проникновению вглубь листа.

Уделено внимание и таким важным аспектам, как скорость высыхания чернил и их стойкость к воздействию солнечного света и содержащихся в воздухе газов (в частности, озона).

ЗАПРАВКА КАРТРИДЖЕЙ – СТОИТ ЛИ ИГРА СВЕЧ?

Главный недостаток струйных принтеров —большие накладные расходы, львиную долю которых составляют затраты на новые картриджи. И самое обидное – каждый раз приходится выбрасывать практически новое устройство, чаще всего сохранившее полную работоспособность, но лишившееся чернил (к тому же не всегда израсходованных полностью).

А НЕЛЬЗЯ ЛИ СЭКОНОМИТЬ?

Ведь для этого "всего лишь" нужно научиться перезаправлять картриджи. Ответ большинства производителей на такое предложение – "НЕТ!" (в этом можно убедиться, открыв инструкцию). Основной аргумент – использование дозаправленного картриджа увеличивает риск выхода принтера или его отдельных частей из строя. В случае обнаружения сервисной службой факта использования перезаправленных картриджей, владелец лишится гарантии и надежд на бесплатный ремонт. Многие всё-таки решаются на самостоятельную заправку, но результат подобной попытки сэкономить может быть разным и совсем неоднозначным в зависимости от марки принтера, конкретного типа картриджей и используемых чернил.

К примеру, в большинстве принтеров Hewlett–Packard картридж совмещен с печатающей головкой в одном корпусе и их замена производится одновременно. Такая конструкция увеличивает вероятность успеха дозаправки и снижает риск выхода из строя принтера – заливая новую порцию чернил, не приходится беспокоиться о печатающей головке (следуя инструкции, ее все равно приходится выкидывать вместе с картриджем!). При известном умении можно успешно производить заправку картриджей HP 5-10 раз с достаточно стабильным результатом. Совершенно по-иному обстоит дело с принтерами Seiko Epson. Печатающая головка в них выполнена несъемной (по крайней мере, обслуживание этого не требует), заменяются только картриджи, которые фактически представляют собой емкости для чернил. Фирма КАТЕГОРИЧЕСКИ не рекомендует производить перезаправку картриджей и в данном вопросе с ней нельзя не согласиться. Цена подобной экономии часто бывает очень велика – чернила низкого качества забивают сопла прецизионной печатающей головки и "реанимировать" ее даже в сервис–центре удается не всегда. Велик риск и засыхания печатающей головки за время, которое она находится без картриджа. Если необходимость заставляет экономить, менее рискованно воспользоваться более дешевыми картриджами третьих производителей (к примеру, той же Print–Rite). В то же время, несмотря на ряд удачных опытов, рекомендуем владельцам принтеров Epson воздержаться от дозаправки и замены рекомендуемых картриджей альтернативными.

Оптимальную, с нашей точки зрения (и главное – стандартную), схему доза правки обеспечивают многие принтеры Canon (в частности, BJC–50, BJC–2000, BJC–6000), в которых предусмотрена замена не только картриджа, совмещенного с печатающей головкой, но и отдельных емкостей с чернилами, вставляемых в картридж. При такой замене обеспечивается наиболее полная выработка ресурса не только печатающей головки, но и каждого резервуара (особенно важно для цветного картриджа). Экономия также значительна — к примеру чернильница к монохромному картриджу BJC–50 стоит в 5–6 раз дешевле самого картриджа.

Приведенных примеров вполне достаточно, чтобы понять следующее – дозаправка картриджей оправданна, если риск сведен к минимуму (дозаправка предусмотрена производителем) или невелик (из–за особенностей конструкции). В этом случае умелые действия по заправке могут действительно сэкономить значительную сумму владельцу без каких–либо осложнении.

Если дозаправка может с большой вероятностью привести к выходу из строя дорогостоящего агрегата принтера (печатающей головки, к примеру), такой риск НЕОПРАВДАН и следует искать другие пути выхода из положения.

Лазерные принтеры

Механические компоненты лазерных принтеров со временем становятся все проще: уменьшается количество движущихся частей, увеличивается надежность и повышается простота обслуживания.

Процесс лазерной печати основан на технологии, разработанной фирмой Xerox. На специальном фоточувствительном барабане лучом света создаются области, заряженные статическим электричеством (картинка прорисовывается лучом по барабану). Барабан вращается напротив картриджа, заряженными областями притягивает тонер, состоящий из покрытых пластиком частичек железа. Затем барабан передвигается над листом бумаги, который заряжен еще сильнее барабана. При этом частички тонера переносятся с барабана на бумагу и затем спекаются под нагревом, превращаясь в водоупорный отпечаток.

Технологическая разница между различными моделями может заключаться в способе создания "изображения" световым лучом на барабане. В настоящих лазерных принтерах используется лазерная пушка, направленная на вращающееся зеркальце, угол его поворота определяет заряженные точки барабана, из которых формируется изображение.

Другим способом является использование постоянного источника света и системы жидкокристаллических "окошек" (диафрагм). По мере вращения барабана они переключаются из прозрачного состояния в непрозрачное и наоборот, создавая заряженные области, соответствующие изображению. Дальнейшим развитием этой технологии стало использование "полоски" светодиодов (как в принтерах OKI).

Несколько сложнее обстоят дела с фотографическими изображениями, содержащими оттенки серого цвета. Область, покрываемая несколькими точками, превращается (комбинируется ) в одну большую виртуальную точку. Она может выглядеть светлее или темнее в зависимости от количества формирующих ее реальных точек. Это и создает эффект градаций серого цвета. Естественно, чем выше разрешение принтера, тем больше реальных точек может быть в одной виртуальной, что означает более высокое качество конечного изображения. Еще более совершенный способ – варьирование размера каждой точки.

В лазерных принтерах, в отличие от матричных, может использоваться только листовая бумага, но не может рулонная. Скорость печати лазерных принтеров значительно различается. Она составляет для разных моделей от 4 до 40 и более страниц в минуту.

Чем быстрее печатает принтер, тем большее значение имеет емкость подающего лотка для загрузки бумаги.

Принтеры имеют разную емкость оперативного запоминающего устройства (ОЗУ), используемого для хранения загружаемых в них шрифтов (например, русского) и печатаемых страниц. Небольшая емкость ОЗУ (512 Кбайт) не позволяет печатать большие (во всю страницу) рисунки и одновременно хранить достаточное количество шрифтов. Если принтер покупается для изготовления оригинал–макетов книг с большим количеством рисунков, то лучше выбрать принтер с большим объемом ОЗУ или дополнительно приобрести несколько мегабайт памяти.

Цены на персональные и групповые лазерные принтеры упали, что делает их доступными для тех людей, которые раньше выбрали бы для себя струйные или матричные модели.

На стоимость лазерного принтера влияют два фактора: разрешение и скорость. В нижнем ценовом диапазоне расположены устройства, способные печатать четыре страницы в минуту с разрешением 600 dpi. Более дорогие модели обладают разрешением 1200 dpi или выше и скоростью печати восемь или более страниц в минуту.

Самая дорогая расходная часть лазерных принтеров – это тонер. В некоторых принтерах барабан и тонер представляют собой единый блок, и их приходится заменять одновременно, что влечет дополнительные затраты. Альтернативой являются модели с раздельным тонером и барабаном. Если вы намерены много печатать, то подобное решение может сэкономить ваши деньги. Однако барабан тоже не вечен: вам придется заменять его каждые 8000–20 000 страниц (в зависимости от того, сколько вы обычно печатает за раз). Издержки эксплуатации можно уменьшить, купив принтер с картриджем, который можно "перезаряжать". В настоящее время существует много компаний, предлагающих обмен пустых картриджей на вновь заправленные примерно за половину стоимости нового. Несмотря на то что порошок в картридже не ядовит, мы не рекомендуем пытаться осуществить перезарядку самостоятельно: это очень "грязная" процедура.

Еще одна статья расхода – дополнительные возможности. Например, некоторые модели предусматривают установку дополнительных лотков для подачи бумаги, модулей расширения памяти принтера, сетевых средств и др. Одной из самых "желанных" возможностей является одновременная печать на обеих сторонах листа. Эта возможность все еще остается привилегией дорогостоящих моделей, однако, если вы планируете в дальнейшем модернизировать свой принтер подобным образом, перед покупкой необходимо убедиться в том, что он поддерживает двустороннюю печать.

ЦВЕТНЫЕ ЛАЗЕРНЫЕ ПРИНТЕРЫ.

Конечно, вряд ли в ближайшем будущем цветные лазерные принтеры сравнятся по популярности с цветными струйными и начнут использоваться в качестве настольных печатающих устройств индивидуального пользования. Однако заметный прогресс технологий в этой области в последнее время сделал соотношение цены и качества печати гораздо более привлекательным.

По различным оценкам, рынок цветных лазерных принтеров еще довольно узок – все-таки цена их, как принято говорить, кусается. Тем не менее нужно признать, что качество печати этих устройств улучшается, а сами они становятся все более привлекательными. Если так пойдет и дальше, то со временем цветная лазерная печать составит конкуренцию струйной. Пока же речь идет “лишь” о претворении в жизнь многочисленных маркетинговых прогнозов, авторы которых предрекают “просто” рост популярности цветных лазерных принтеров, не зависящий от успехов печатающих устройств других типов.